Screening of quinoline, 1,3-benzoxazine, and 1,3-oxazine-based small molecules against isolated methionyl-tRNA synthetase and A549 and HCT116 cancer cells including an in silico binding mode analysis.
نویسندگان
چکیده
Elevated activity of methionyl-tRNA synthetase (MRS) in many cancers renders it a possible drug target in this disease area, as well as in a series of parasitic diseases. In the present work, we report the synthesis and in vitro screening of a library of 1,3-oxazines, benzoxazines and quinoline scaffolds against human MRS. Among the compounds tested, 2-(2-butyl-4-chloro-1-(4-phenoxybenzyl)-1H-imidazol-5-yl)-5-(4-methoxyphenyl)-1-oxa-3-azaspiro[5.5]undecane (compound 21) and 2-(2-butyl-4-chloro-1-(4-nitrobenzyl)-1H-imidazol-5-yl)-2,4-dihydro-1H-benzo[d][1,3]oxazine (compound 8) were found to be potent inhibitors of MRS. Additionally, these compounds significantly suppressed the proliferation of A549 and HCT116 cells with IC50 values of 28.4, 17.7, 41.9, and 19.8 μM respectively. Molecular docking studies suggested that the ligand binding orientation overlaps with the original positions of both methionine and adenosine of MRS. This suggests the binding of compound 21 against MRS, which might lead the inhibitory activity towards cancer cells.
منابع مشابه
Novel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach
Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...
متن کاملNovel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach
Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...
متن کاملIn Silico Screening Studies on Methanesulfonamide Derivatives as Dual Hsp27 and Tubulin Inhibitors Using QSAR and Molecular Docking
The expression of heat shock protein 27 (Hsp27) as a chaperone protein, is increased in response to various stress stimuli such as anticancer chemotherapy. This phenomenon can lead to survive of the cells and causes drug resistance. In this study, a series of methanesulfonamide derivatives as dual Hsp27 and tubulin inhibitors in the treatment of cancer were applied to quantitative structure–act...
متن کاملStereoselective synthesis and cytoselective toxicity of monoterpene-fused 2-imino-1,3-thiazines.
Starting from pinane-, apopinane- and carane-based 1,3-amino alcohols obtained from monoterpene-based β-amino acids, a library of monoterpene-fused 2-imino-1,3-thiazines as main products and 2-thioxo-1,3-oxazines as side-products were prepared via two- or three-step syntheses. When thiourea adducts prepared from 1,3-amino alcohols and aryl isothiocyanates were reacted with CDI under mild condit...
متن کاملI-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction
Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Organic & biomolecular chemistry
دوره 13 36 شماره
صفحات -
تاریخ انتشار 2015